Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interpretable by Design: Learning Predictors by Composing Interpretable Queries (2207.00938v2)

Published 3 Jul 2022 in cs.CV and cs.LG

Abstract: There is a growing concern about typically opaque decision-making with high-performance machine learning algorithms. Providing an explanation of the reasoning process in domain-specific terms can be crucial for adoption in risk-sensitive domains such as healthcare. We argue that machine learning algorithms should be interpretable by design and that the language in which these interpretations are expressed should be domain- and task-dependent. Consequently, we base our model's prediction on a family of user-defined and task-specific binary functions of the data, each having a clear interpretation to the end-user. We then minimize the expected number of queries needed for accurate prediction on any given input. As the solution is generally intractable, following prior work, we choose the queries sequentially based on information gain. However, in contrast to previous work, we need not assume the queries are conditionally independent. Instead, we leverage a stochastic generative model (VAE) and an MCMC algorithm (Unadjusted Langevin) to select the most informative query about the input based on previous query-answers. This enables the online determination of a query chain of whatever depth is required to resolve prediction ambiguities. Finally, experiments on vision and NLP tasks demonstrate the efficacy of our approach and its superiority over post-hoc explanations.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.