Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Biomedical Pipeline to Detect Clinical and Non-Clinical Named Entities (2207.00876v1)

Published 2 Jul 2022 in cs.CL and cs.IR

Abstract: There are a few challenges related to the task of biomedical named entity recognition, which are: the existing methods consider a fewer number of biomedical entities (e.g., disease, symptom, proteins, genes); and these methods do not consider the social determinants of health (age, gender, employment, race), which are the non-medical factors related to patients' health. We propose a machine learning pipeline that improves on previous efforts in the following ways: first, it recognizes many biomedical entity types other than the standard ones; second, it considers non-clinical factors related to patient's health. This pipeline also consists of stages, such as preprocessing, tokenization, mapping embedding lookup and named entity recognition task to extract biomedical named entities from the free texts. We present a new dataset that we prepare by curating the COVID-19 case reports. The proposed approach outperforms the baseline methods on five benchmark datasets with macro-and micro-average F1 scores around 90, as well as our dataset with a macro-and micro-average F1 score of 95.25 and 93.18 respectively.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.