Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Tree-constrained Pointer Generator with Graph Neural Network Encodings for Contextual Speech Recognition (2207.00857v1)

Published 2 Jul 2022 in cs.SD, cs.CL, and eess.AS

Abstract: Incorporating biasing words obtained as contextual knowledge is critical for many automatic speech recognition (ASR) applications. This paper proposes the use of graph neural network (GNN) encodings in a tree-constrained pointer generator (TCPGen) component for end-to-end contextual ASR. By encoding the biasing words in the prefix-tree with a tree-based GNN, lookahead for future wordpieces in end-to-end ASR decoding is achieved at each tree node by incorporating information about all wordpieces on the tree branches rooted from it, which allows a more accurate prediction of the generation probability of the biasing words. Systems were evaluated on the Librispeech corpus using simulated biasing tasks, and on the AMI corpus by proposing a novel visual-grounded contextual ASR pipeline that extracts biasing words from slides alongside each meeting. Results showed that TCPGen with GNN encodings achieved about a further 15% relative WER reduction on the biasing words compared to the original TCPGen, with a negligible increase in the computation cost for decoding.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.