Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Cell-Free Massive MIMO for URLLC: A Finite-Blocklength Analysis (2207.00856v3)

Published 2 Jul 2022 in cs.IT, eess.SP, and math.IT

Abstract: We present a general framework for the characterization of the packet error probability achievable in cell-free Massive multiple-input multiple output (MIMO) architectures deployed to support ultra-reliable low-latency (URLLC) traffic. The framework is general and encompasses both centralized and distributed cell-free architectures, arbitrary fading channels and channel estimation algorithms at both network and user-equipment (UE) sides, as well as arbitrary combining and precoding schemes. The framework is used to perform numerical experiments on specific scenarios, which illustrate the superiority of cell-free architectures compared to cellular architectures in supporting URLLC traffic in uplink and downlink. Also, these numerical experiments provide the following insights into the design of cell-free architectures for URLLC: i) minimum mean square error (MMSE) spatial processing must be used to achieve the URLLC targets; ii) for a given total number of antennas per coverage area, centralized cell-free solutions involving single-antenna access points (APs) offer the best performance in the uplink, thereby highlighting the importance of reducing the average distance between APs and UEs in the URLLC regime; iii) this observation applies also to the downlink, provided that the APs transmit precoded pilots to allow the UEs to estimate accurately the precoded channel.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.