Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Safe Reinforcement Learning for a Robot Being Pursued but with Objectives Covering More Than Capture-avoidance (2207.00842v1)

Published 2 Jul 2022 in eess.SY and cs.SY

Abstract: Reinforcement Learning (RL) algorithms show amazing performance in recent years, but placing RL in real-world applications such as self-driven vehicles may suffer safety problems. A self-driven vehicle moving to a target position following a learned policy may suffer a vehicle with unpredictable aggressive behaviors or even being pursued by a vehicle following a Nash strategy. To address the safety issue of the self-driven vehicle in this scenario, this paper conducts a preliminary study based on a system of robots. A safe RL framework with safety guarantees is developed for a robot being pursued but with objectives covering more than capture-avoidance. Simulations and experiments are conducted based on the system of robots to evaluate the effectiveness of the developed safe RL framework.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.