Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 209 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Safe Reinforcement Learning for a Robot Being Pursued but with Objectives Covering More Than Capture-avoidance (2207.00842v1)

Published 2 Jul 2022 in eess.SY and cs.SY

Abstract: Reinforcement Learning (RL) algorithms show amazing performance in recent years, but placing RL in real-world applications such as self-driven vehicles may suffer safety problems. A self-driven vehicle moving to a target position following a learned policy may suffer a vehicle with unpredictable aggressive behaviors or even being pursued by a vehicle following a Nash strategy. To address the safety issue of the self-driven vehicle in this scenario, this paper conducts a preliminary study based on a system of robots. A safe RL framework with safety guarantees is developed for a robot being pursued but with objectives covering more than capture-avoidance. Simulations and experiments are conducted based on the system of robots to evaluate the effectiveness of the developed safe RL framework.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.