Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

On the Computational Efficiency of Adaptive and Dynamic Regret Minimization (2207.00646v4)

Published 1 Jul 2022 in cs.LG

Abstract: In online convex optimization, the player aims to minimize regret, or the difference between her loss and that of the best fixed decision in hindsight over the entire repeated game. Algorithms that minimize (standard) regret may converge to a fixed decision, which is undesirable in changing or dynamic environments. This motivates the stronger metrics of performance, notably adaptive and dynamic regret. Adaptive regret is the maximum regret over any continuous sub-interval in time. Dynamic regret is the difference between the total cost and that of the best sequence of decisions in hindsight. State-of-the-art performance in both adaptive and dynamic regret minimization suffers a computational penalty - typically on the order of a multiplicative factor that grows logarithmically in the number of game iterations. In this paper we show how to reduce this computational penalty to be doubly logarithmic in the number of game iterations, and retain near optimal adaptive and dynamic regret bounds.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.