Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Self-Supervised Learning for Videos: A Survey (2207.00419v3)

Published 18 Jun 2022 in cs.CV and cs.MM

Abstract: The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.

Citations (113)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.