Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer Heterogeneous Networks (2207.00415v1)

Published 4 Jun 2022 in cs.NI, cs.DC, and cs.LG

Abstract: Adept network management is key for supporting extremely heterogeneous applications with stringent quality of service (QoS) requirements; this is more so when envisioning the complex and ultra-dense 6G mobile heterogeneous network (HetNet). From both the environmental and economical perspectives, non-homogeneous QoS demands obstruct the minimization of the energy footprints and operational costs of the envisioned robust networks. As such, network intelligentization is expected to play an essential role in the realization of such sophisticated aims. The fusion of AI and mobile networks will allow for the dynamic and automatic configuration of network functionalities. Machine learning (ML), one of the backbones of AI, will be instrumental in forecasting changes in network loads and resource utilization, estimating channel conditions, optimizing network slicing, and enhancing security and encryption. However, it is well known that ML tasks themselves incur massive computational burdens and energy costs. To overcome such obstacles, we propose a novel layer-based HetNet architecture which optimally distributes tasks associated with different ML approaches across network layers and entities; such a HetNet boasts multiple access schemes as well as device-to-device (D2D) communications to enhance energy efficiency via collaborative learning and communications.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube