Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DALG: Deep Attentive Local and Global Modeling for Image Retrieval (2207.00287v1)

Published 1 Jul 2022 in cs.CV

Abstract: Deeply learned representations have achieved superior image retrieval performance in a retrieve-then-rerank manner. Recent state-of-the-art single stage model, which heuristically fuses local and global features, achieves promising trade-off between efficiency and effectiveness. However, we notice that efficiency of existing solutions is still restricted because of their multi-scale inference paradigm. In this paper, we follow the single stage art and obtain further complexity-effectiveness balance by successfully getting rid of multi-scale testing. To achieve this goal, we abandon the widely-used convolution network giving its limitation in exploring diverse visual patterns, and resort to fully attention based framework for robust representation learning motivated by the success of Transformer. Besides applying Transformer for global feature extraction, we devise a local branch composed of window-based multi-head attention and spatial attention to fully exploit local image patterns. Furthermore, we propose to combine the hierarchical local and global features via a cross-attention module, instead of using heuristically fusion as previous art does. With our Deep Attentive Local and Global modeling framework (DALG), extensive experimental results show that efficiency can be significantly improved while maintaining competitive results with the state of the arts.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.