Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Keeping Less is More: Point Sparsification for Visual SLAM (2207.00225v2)

Published 1 Jul 2022 in cs.RO and cs.CV

Abstract: When adapting Simultaneous Mapping and Localization (SLAM) to real-world applications, such as autonomous vehicles, drones, and augmented reality devices, its memory footprint and computing cost are the two main factors limiting the performance and the range of applications. In sparse feature based SLAM algorithms, one efficient way for this problem is to limit the map point size by selecting the points potentially useful for local and global bundle adjustment (BA). This study proposes an efficient graph optimization for sparsifying map points in SLAM systems. Specifically, we formulate a maximum pose-visibility and maximum spatial diversity problem as a minimum-cost maximum-flow graph optimization problem. The proposed method works as an additional step in existing SLAM systems, so it can be used in both conventional or learning based SLAM systems. By extensive experimental evaluations we demonstrate the proposed method achieves even more accurate camera poses with approximately 1/3 of the map points and 1/2 of the computation.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube