Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rethinking Query-Key Pairwise Interactions in Vision Transformers (2207.00188v2)

Published 1 Jul 2022 in cs.CV

Abstract: Vision Transformers have achieved state-of-the-art performance in many visual tasks. Due to the quadratic computational and memory complexities of self-attention, recent works either apply attention only to low-resolution inputs or restrict the receptive field to a small local region. To overcome these limitations, we propose key-only attention, which excludes query-key pairwise interactions and uses a compute-efficient saliency-gate to obtain attention weights, modeling local-global interactions in all stages. Key-only attention has linear computational and memory complexities w.r.t input size. We use alternate layout to hybridize convolution and attention layers instead of grafting which is suggested by previous works, so that all stages can benefit from both spatial attentions and convolutions. We leverage these improvements to develop a new self-attention model family, LinGlos, which reach state-of-the-art accuracies on the parameter-limited setting of ImageNet classification benchmark, and outperform baselines significantly in downstream tasks, e.g., COCO object detection and ADE20K semantic segmentation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)