Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Metric Dimension Parameterized by Feedback Vertex Set and Other Structural Parameters (2206.15424v3)

Published 30 Jun 2022 in cs.DM, cs.CC, and cs.DS

Abstract: For a graph $G$, a subset $S \subseteq V(G)$ is called a \emph{resolving set} if for any two vertices $u,v \in V(G)$, there exists a vertex $w \in S$ such that $d(w,u) \neq d(w,v)$. The {\sc Metric Dimension} problem takes as input a graph $G$ and a positive integer $k$, and asks whether there exists a resolving set of size at most $k$. This problem was introduced in the 1970s and is known to be \NP-hard~[GT~61 in Garey and Johnson's book]. In the realm of parameterized complexity, Hartung and Nichterlein~[CCC~2013] proved that the problem is \W[2]-hard when parameterized by the natural parameter $k$. They also observed that it is \FPT\ when parameterized by the vertex cover number and asked about its complexity under \emph{smaller} parameters, in particular the feedback vertex set number. We answer this question by proving that {\sc Metric Dimension} is \W[1]-hard when parameterized by the combined parameter feedback vertex set number plus pathwidth. This also improves the result of Bonnet and Purohit~[IPEC 2019] which states that the problem is \W[1]-hard parameterized by the pathwidth. On the positive side, we show that {\sc Metric Dimension} is \FPT\ when parameterized by either the distance to cluster or the distance to co-cluster, both of which are smaller parameters than the vertex cover number.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.