Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tight Bounds for Online Matching in Bounded-Degree Graphs with Vertex Capacities (2206.15336v1)

Published 30 Jun 2022 in cs.DS

Abstract: We study the $b$-matching problem in bipartite graphs $G=(S,R,E)$. Each vertex $s\in S$ is a server with individual capacity $b_s$. The vertices $r\in R$ are requests that arrive online and must be assigned instantly to an eligible server. The goal is to maximize the size of the constructed matching. We assume that $G$ is a $(k,d)$-graph~\cite{NW}, where $k$ specifies a lower bound on the degree of each server and $d$ is an upper bound on the degree of each request. This setting models matching problems in timely applications. We present tight upper and lower bounds on the performance of deterministic online algorithms. In particular, we develop a new online algorithm via a primal-dual analysis. The optimal competitive ratio tends to~1, for arbitrary $k\geq d$, as the server capacities increase. Hence, nearly optimal solutions can be computed online. Our results also hold for the vertex-weighted problem extension, and thus for AdWords and auction problems in which each bidder issues individual, equally valued bids. Our bounds improve the previous best competitive ratios. The asymptotic competitiveness of~1 is a significant improvement over the previous factor of $1-1/e{k/d}$, for the interesting range where $k/d\geq 1$ is small. Recall that $1-1/e\approx 0.63$. Matching problems that admit a competitive ratio arbitrarily close to~1 are rare. Prior results rely on randomization or probabilistic input models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.