Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Benchmark Dataset for Precipitation Forecasting by Post-Processing the Numerical Weather Prediction (2206.15241v2)

Published 30 Jun 2022 in cs.LG and physics.ao-ph

Abstract: Precipitation forecasting is an important scientific challenge that has wide-reaching impacts on society. Historically, this challenge has been tackled using numerical weather prediction (NWP) models, grounded on physics-based simulations. Recently, many works have proposed an alternative approach, using end-to-end deep learning (DL) models to replace physics-based NWP models. While these DL methods show improved performance and computational efficiency, they exhibit limitations in long-term forecasting and lack the explainability. In this work, we present a hybrid NWP-DL workflow to fill the gap between standalone NWP and DL approaches. Under this workflow, the outputs of NWP models are fed into a deep neural network, which post-processes the data to yield a refined precipitation forecast. The deep model is trained with supervision, using Automatic Weather Station (AWS) observations as ground-truth labels. This can achieve the best of both worlds, and can even benefit from future improvements in NWP technology. To facilitate study in this direction, we present a novel dataset focused on the Korean Peninsula, termed KoMet (Korea Meteorological Dataset), comprised of NWP outputs and AWS observations. For the NWP model, the Global Data Assimilation and Prediction Systems-Korea Integrated Model (GDAPS-KIM) is utilized. We provide analysis on a comprehensive set of baseline methods aimed at addressing the challenges of KoMet, including the sparsity of AWS observations and class imbalance. To lower the barrier to entry and encourage further study, we also provide an extensive open-source Python package for data processing and model development. Our benchmark data and code are available at https://github.com/osilab-kaist/KoMet-Benchmark-Dataset.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com