Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Discrete Langevin Sampler via Wasserstein Gradient Flow (2206.14897v2)

Published 29 Jun 2022 in cs.LG

Abstract: It is known that gradient-based MCMC samplers for continuous spaces, such as Langevin Monte Carlo (LMC), can be derived as particle versions of a gradient flow that minimizes KL divergence on a Wasserstein manifold. The superior efficiency of such samplers has motivated several recent attempts to generalize LMC to discrete spaces. However, a fully principled extension of Langevin dynamics to discrete spaces has yet to be achieved, due to the lack of well-defined gradients in the sample space. In this work, we show how the Wasserstein gradient flow can be generalized naturally to discrete spaces. Given the proposed formulation, we demonstrate how a discrete analogue of Langevin dynamics can subsequently be developed. With this new understanding, we reveal how recent gradient-based samplers in discrete spaces can be obtained as special cases by choosing particular discretizations. More importantly, the framework also allows for the derivation of novel algorithms, one of which, \textit{Discrete Langevin Monte Carlo} (DLMC), is obtained by a factorized estimate of the transition matrix. The DLMC method admits a convenient parallel implementation and time-uniform sampling that achieves larger jump distances. We demonstrate the advantages of DLMC on various binary and categorical distributions.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.