Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Molecular information theory meets protein folding (2206.14706v1)

Published 29 Jun 2022 in q-bio.BM, cs.IT, and math.IT

Abstract: We propose an application of molecular information theory to analyze the folding of single domain proteins. We analyze results from various areas of protein science, such as sequence-based potentials, reduced amino acid alphabets, backbone configurational entropy, secondary structure content, residue burial layers, and mutational studies of protein stability changes. We found that the average information contained in the sequences of evolved proteins is very close to the average information needed to specify a fold ~2.2 $\pm$ 0.3 bits/(site operation). The effective alphabet size in evolved proteins equals the effective number of conformations of a residue in the compact unfolded state at around 5. We calculated an energy-to-information conversion efficiency upon folding of around 50%, lower than the theoretical limit of 70%, but much higher than human built macroscopic machines. We propose a simple mapping between molecular information theory and energy landscape theory and explore the connections between sequence evolution, configurational entropy and the energetics of protein folding.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.