Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Meta-Wrapper: Differentiable Wrapping Operator for User Interest Selection in CTR Prediction (2206.14647v1)

Published 28 Jun 2022 in cs.IR and cs.AI

Abstract: Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in the recommender systems. Recently, some deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success. In these work, the attention mechanism is used to select the user interested items in historical behaviors, improving the performance of the CTR predictor. Normally, these attentive modules can be jointly trained with the base predictor by using gradient descents. In this paper, we regard user interest modeling as a feature selection problem, which we call user interest selection. For such a problem, we propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper. More specifically, we use a differentiable module as our wrapping operator and then recast its learning problem as a continuous bilevel optimization. Moreover, we use a meta-learning algorithm to solve the optimization and theoretically prove its convergence. Meanwhile, we also provide theoretical analysis to show that our proposed method 1) efficiencies the wrapper-based feature selection, and 2) achieves better resistance to overfitting. Finally, extensive experiments on three public datasets manifest the superiority of our method in boosting the performance of CTR prediction.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.