Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An $hp$-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use (2206.14435v2)

Published 29 Jun 2022 in cs.CE

Abstract: This paper introduces an $hp$-adaptive multi-element stochastic collocation method, which additionally allows to re-use existing model evaluations during either $h$- or $p$-refinement. The collocation method is based on weighted Leja nodes. After $h$-refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub-element in a hierarchical manner. For $p$-refinement, the local polynomial approximations are based on total-degree or dimension-adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non-smooth or strongly localised response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.