Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An $hp$-adaptive multi-element stochastic collocation method for surrogate modeling with information re-use (2206.14435v2)

Published 29 Jun 2022 in cs.CE

Abstract: This paper introduces an $hp$-adaptive multi-element stochastic collocation method, which additionally allows to re-use existing model evaluations during either $h$- or $p$-refinement. The collocation method is based on weighted Leja nodes. After $h$-refinement, local interpolations are stabilized by adding and sorting Leja nodes on each newly created sub-element in a hierarchical manner. For $p$-refinement, the local polynomial approximations are based on total-degree or dimension-adaptive bases. The method is applied in the context of forward and inverse uncertainty quantification to handle non-smooth or strongly localised response surfaces. The performance of the proposed method is assessed in several test cases, also in comparison to competing methods.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.