Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Distributed Edge-based Video Analytics on the Move (2206.14414v1)

Published 29 Jun 2022 in cs.DC

Abstract: In recent years, we have witnessed an explosive growth of data. Much of this data is video data generated by security cameras, smartphones, and dash cams. The timely analysis of such data is of great practical importance for many emerging applications, such as real-time facial recognition and object detection. In this study, we address the problem of real-time in-situ video analytics with dash cam videos and present EdgeDashAnalytics (EDA), an edge-based system that enables near real-time video analytics using a local network of mobile devices. In particular, it simultaneously processes videos produced by two dash cams of different angles with one or more mobile devices on the move in a near real-time manner. One camera faces outward to capture the view in front of the vehicle, while the other camera faces inward to capture the driver. The outer videos are analysed to detect potential driving hazards, while the inner videos are used to identify driver distractedness. EDA achieves near real-time video analytics using resource-constrained, transient mobile devices by devising and incorporating several optimisations, with a tolerable loss in accuracy. We have implemented EDA as an Android app and evaluated it using two dash cams and several heterogeneous mobile devices with the BDD100K dash cam video dataset (arXiv:1805.04687 [cs.CV]) and the DMD driver monitoring dataset (arXiv:2008.12085 [cs.CV]). Experiment results demonstrate the feasibility of real-time video analytics in terms of turnaround time and energy consumption (or battery usage), using resource-constrained mobile devices on the move.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.