Papers
Topics
Authors
Recent
2000 character limit reached

Chinese Word Sense Embedding with SememeWSD and Synonym Set (2206.14388v1)

Published 29 Jun 2022 in cs.CL

Abstract: Word embedding is a fundamental natural language processing task which can learn feature of words. However, most word embedding methods assign only one vector to a word, even if polysemous words have multi-senses. To address this limitation, we propose SememeWSD Synonym (SWSDS) model to assign a different vector to every sense of polysemous words with the help of word sense disambiguation (WSD) and synonym set in OpenHowNet. We use the SememeWSD model, an unsupervised word sense disambiguation model based on OpenHowNet, to do word sense disambiguation and annotate the polysemous word with sense id. Then, we obtain top 10 synonyms of the word sense from OpenHowNet and calculate the average vector of synonyms as the vector of the word sense. In experiments, We evaluate the SWSDS model on semantic similarity calculation with Gensim's wmdistance method. It achieves improvement of accuracy. We also examine the SememeWSD model on different BERT models to find the more effective model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.