Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

InvAASTCluster: On Applying Invariant-Based Program Clustering to Introductory Programming Assignments (2206.14175v3)

Published 28 Jun 2022 in cs.SE, cs.AI, cs.CY, and cs.PL

Abstract: Due to the vast number of students enrolled in programming courses, there has been an increasing number of automated program repair techniques focused on introductory programming assignments (IPAs). Typically, such techniques use program clustering to take advantage of previous correct student implementations to repair a new incorrect submission. These repair techniques use clustering methods since analyzing all available correct submissions to repair a program is not feasible. However, conventional clustering methods rely on program representations based on features such as abstract syntax trees (ASTs), syntax, control flow, and data flow. This paper proposes InvAASTCluster, a novel approach for program clustering that uses dynamically generated program invariants to cluster semantically equivalent IPAs. InvAASTCluster's program representation uses a combination of the program's semantics, through its invariants, and its structure through its anonymized abstract syntax tree (AASTs). Invariants denote conditions that must remain true during program execution, while AASTs are ASTs devoid of variable and function names, retaining only their types. Our experiments show that the proposed program representation outperforms syntax-based representations when clustering a set of correct IPAs. Furthermore, we integrate InvAASTCluster into a state-of-the-art clustering-based program repair tool. Our results show that InvAASTCluster advances the current state-of-the-art when used by clustering-based repair tools by repairing around 13% more students' programs, in a shorter amount of time.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube