Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Compilation Forking: A Fast and Flexible Way of Generating Data for Compiler-Internal Machine Learning Tasks (2206.14091v1)

Published 28 Jun 2022 in cs.PL

Abstract: Compiler optimization decisions are often based on hand-crafted heuristics centered around a few established benchmark suites. Alternatively, they can be learned from feature and performance data produced during compilation. However, data-driven compiler optimizations based on machine learning models require large sets of quality data for training in order to match or even outperform existing human-crafted heuristics. In static compilation setups, related work has addressed this problem with iterative compilation. However, a dynamic compiler may produce different data depending on dynamically-chosen compilation strategies, which aggravates the generation of comparable data. We propose compilation forking, a technique for generating consistent feature and performance data from arbitrary, dynamically-compiled programs. Different versions of program parts with the same profiling and compilation history are executed within single program runs to minimize noise stemming from dynamic compilation and the runtime environment. Our approach facilitates large-scale performance evaluations of compiler optimization decisions. Additionally, compilation forking supports creating domain-specific compilation strategies based on machine learning by providing the data for model training. We implemented compilation forking in the GraalVM compiler in a programming-language-agnostic way. To assess the quality of the generated data, we trained several machine learning models to replace compiler heuristics for loop-related optimizations. The trained models perform equally well to the highly-tuned compiler heuristics when comparing the geometric means of benchmark suite performances. Larger impacts on few single benchmarks range from speedups of 20% to slowdowns of 17%. The presented approach can be implemented in any dynamic compiler. We believe that it can help to analyze compilation decisions and leverage the use of machine learning into dynamic compilation.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.