Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Label-enhanced Prototypical Network with Contrastive Learning for Multi-label Few-shot Aspect Category Detection (2206.13980v1)

Published 14 Jun 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Multi-label aspect category detection allows a given review sentence to contain multiple aspect categories, which is shown to be more practical in sentiment analysis and attracting increasing attention. As annotating large amounts of data is time-consuming and labor-intensive, data scarcity occurs frequently in real-world scenarios, which motivates multi-label few-shot aspect category detection. However, research on this problem is still in infancy and few methods are available. In this paper, we propose a novel label-enhanced prototypical network (LPN) for multi-label few-shot aspect category detection. The highlights of LPN can be summarized as follows. First, it leverages label description as auxiliary knowledge to learn more discriminative prototypes, which can retain aspect-relevant information while eliminating the harmful effect caused by irrelevant aspects. Second, it integrates with contrastive learning, which encourages that the sentences with the same aspect label are pulled together in embedding space while simultaneously pushing apart the sentences with different aspect labels. In addition, it introduces an adaptive multi-label inference module to predict the aspect count in the sentence, which is simple yet effective. Extensive experimental results on three datasets demonstrate that our proposed model LPN can consistently achieve state-of-the-art performance.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.