Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Memory for Interpretable Sequential Optimisation

Published 28 Jun 2022 in cs.LG, cs.AI, and stat.ML | (2206.13960v1)

Abstract: Real-world applications of reinforcement learning for recommendation and experimentation faces a practical challenge: the relative reward of different bandit arms can evolve over the lifetime of the learning agent. To deal with these non-stationary cases, the agent must forget some historical knowledge, as it may no longer be relevant to minimise regret. We present a solution to handling non-stationarity that is suitable for deployment at scale, to provide business operators with automated adaptive optimisation. Our solution aims to provide interpretable learning that can be trusted by humans, whilst responding to non-stationarity to minimise regret. To this end, we develop an adaptive Bayesian learning agent that employs a novel form of dynamic memory. It enables interpretability through statistical hypothesis testing, by targeting a set point of statistical power when comparing rewards and adjusting its memory dynamically to achieve this power. By design, the agent is agnostic to different kinds of non-stationarity. Using numerical simulations, we compare its performance against an existing proposal and show that, under multiple non-stationary scenarios, our agent correctly adapts to real changes in the true rewards. In all bandit solutions, there is an explicit trade-off between learning and achieving maximal performance. Our solution sits on a different point on this trade-off when compared to another similarly robust approach: we prioritise interpretability, which relies on more learning, at the cost of some regret. We describe the architecture of a large-scale deployment of automatic optimisation-as-a-service where our agent achieves interpretability whilst adapting to changing circumstances.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.