Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

AS-IntroVAE: Adversarial Similarity Distance Makes Robust IntroVAE (2206.13903v3)

Published 28 Jun 2022 in eess.IV and cs.CV

Abstract: Recently, introspective models like IntroVAE and S-IntroVAE have excelled in image generation and reconstruction tasks. The principal characteristic of introspective models is the adversarial learning of VAE, where the encoder attempts to distinguish between the real and the fake (i.e., synthesized) images. However, due to the unavailability of an effective metric to evaluate the difference between the real and the fake images, the posterior collapse and the vanishing gradient problem still exist, reducing the fidelity of the synthesized images. In this paper, we propose a new variation of IntroVAE called Adversarial Similarity Distance Introspective Variational Autoencoder (AS-IntroVAE). We theoretically analyze the vanishing gradient problem and construct a new Adversarial Similarity Distance (AS-Distance) using the 2-Wasserstein distance and the kernel trick. With weight annealing on AS-Distance and KL-Divergence, the AS-IntroVAE are able to generate stable and high-quality images. The posterior collapse problem is addressed by making per-batch attempts to transform the image so that it better fits the prior distribution in the latent space. Compared with the per-image approach, this strategy fosters more diverse distributions in the latent space, allowing our model to produce images of great diversity. Comprehensive experiments on benchmark datasets demonstrate the effectiveness of AS-IntroVAE on image generation and reconstruction tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.