Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generating near-infrared facial expression datasets with dimensional affect labels (2206.13887v1)

Published 28 Jun 2022 in cs.CV

Abstract: Facial expression analysis has long been an active research area of computer vision. Traditional methods mainly analyse images for prototypical discrete emotions; as a result, they do not provide an accurate depiction of the complex emotional states in humans. Furthermore, illumination variance remains a challenge for face analysis in the visible light spectrum. To address these issues, we propose using a dimensional model based on valence and arousal to represent a wider range of emotions, in combination with near infra-red (NIR) imagery, which is more robust to illumination changes. Since there are no existing NIR facial expression datasets with valence-arousal labels available, we present two complementary data augmentation methods (face morphing and CycleGAN approach) to create NIR image datasets with dimensional emotion labels from existing categorical and/or visible-light datasets. Our experiments show that these generated NIR datasets are comparable to existing datasets in terms of data quality and baseline prediction performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.