Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Get Your Memory Right: The Crispy Resource Allocation Assistant for Large-Scale Data Processing (2206.13852v2)

Published 28 Jun 2022 in cs.DC

Abstract: Distributed dataflow systems like Apache Spark and Apache Hadoop enable data-parallel processing of large datasets on clusters. Yet, selecting appropriate computational resources for dataflow jobs -- that neither lead to bottlenecks nor to low resource utilization -- is often challenging, even for expert users such as data engineers. Further, existing automated approaches to resource selection rely on the assumption that a job is recurring to learn from previous runs or to warrant the cost of full test runs to learn from. However, this assumption often does not hold since many jobs are too unique. Therefore, we present Crispy, a method for optimizing data processing cluster configurations based on job profiling runs with small samples of the dataset on just a single machine. Crispy attempts to extrapolate the memory usage for the full dataset to then choose a cluster configuration with enough total memory. In our evaluation on a dataset with 1031 Spark and Hadoop jobs, we see a reduction of job execution costs by 56% compared to the baseline, while on average spending less than ten minutes on profiling runs per job on a consumer-grade laptop.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.