Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

3D Multi-Object Tracking with Differentiable Pose Estimation (2206.13785v1)

Published 28 Jun 2022 in cs.CV

Abstract: We propose a novel approach for joint 3D multi-object tracking and reconstruction from RGB-D sequences in indoor environments. To this end, we detect and reconstruct objects in each frame while predicting dense correspondences mappings into a normalized object space. We leverage those correspondences to inform a graph neural network to solve for the optimal, temporally-consistent 7-DoF pose trajectories of all objects. The novelty of our method is two-fold: first, we propose a new graph-based approach for differentiable pose estimation over time to learn optimal pose trajectories; second, we present a joint formulation of reconstruction and pose estimation along the time axis for robust and geometrically consistent multi-object tracking. In order to validate our approach, we introduce a new synthetic dataset comprising 2381 unique indoor sequences with a total of 60k rendered RGB-D images for multi-object tracking with moving objects and camera positions derived from the synthetic 3D-FRONT dataset. We demonstrate that our method improves the accumulated MOTA score for all test sequences by 24.8% over existing state-of-the-art methods. In several ablations on synthetic and real-world sequences, we show that our graph-based, fully end-to-end-learnable approach yields a significant boost in tracking performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.