Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Studying Generalization Through Data Averaging (2206.13669v1)

Published 28 Jun 2022 in stat.ML and cs.LG

Abstract: The generalization of machine learning models has a complex dependence on the data, model and learning algorithm. We study train and test performance, as well as the generalization gap given by the mean of their difference over different data set samples to understand their ``typical" behavior. We derive an expression for the gap as a function of the covariance between the model parameter distribution and the train loss, and another expression for the average test performance, showing test generalization only depends on data-averaged parameter distribution and the data-averaged loss. We show that for a large class of model parameter distributions a modified generalization gap is always non-negative. By specializing further to parameter distributions produced by stochastic gradient descent (SGD), along with a few approximations and modeling considerations, we are able to predict some aspects about how the generalization gap and model train and test performance vary as a function of SGD noise. We evaluate these predictions empirically on the Cifar10 classification task based on a ResNet architecture.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)