Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Envelope imbalanced ensemble model with deep sample learning and local-global structure consistency (2206.13507v1)

Published 25 Jun 2022 in cs.LG

Abstract: The class imbalance problem is important and challenging. Ensemble approaches are widely used to tackle this problem because of their effectiveness. However, existing ensemble methods are always applied into original samples, while not considering the structure information among original samples. The limitation will prevent the imbalanced learning from being better. Besides, research shows that the structure information among samples includes local and global structure information. Based on the analysis above, an imbalanced ensemble algorithm with the deep sample pre-envelope network (DSEN) and local-global structure consistency mechanism (LGSCM) is proposed here to solve the problem.This algorithm can guarantee high-quality deep envelope samples for considering the local manifold and global structures information, which is helpful for imbalance learning. First, the deep sample envelope pre-network (DSEN) is designed to mine structure information among samples.Then, the local manifold structure metric (LMSM) and global structure distribution metric (GSDM) are designed to construct LGSCM to enhance distribution consistency of interlayer samples. Next, the DSEN and LGSCM are put together to form the final deep sample envelope network (DSEN-LG). After that, base classifiers are applied on the layers of deep samples respectively.Finally, the predictive results from base classifiers are fused through bagging ensemble learning mechanism. To demonstrate the effectiveness of the proposed method, forty-four public datasets and more than ten representative relevant algorithms are chosen for verification. The experimental results show that the algorithm is significantly better than other imbalanced ensemble algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.