Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

"Double vaccinated, 5G boosted!": Learning Attitudes towards COVID-19 Vaccination from Social Media (2206.13456v1)

Published 27 Jun 2022 in cs.SI, cs.CY, and cs.LG

Abstract: To address the vaccine hesitancy which impairs the efforts of the COVID-19 vaccination campaign, it is imperative to understand public vaccination attitudes and timely grasp their changes. In spite of reliability and trustworthiness, conventional attitude collection based on surveys is time-consuming and expensive, and cannot follow the fast evolution of vaccination attitudes. We leverage the textual posts on social media to extract and track users' vaccination stances in near real time by proposing a deep learning framework. To address the impact of linguistic features such as sarcasm and irony commonly used in vaccine-related discourses, we integrate into the framework the recent posts of a user's social network neighbours to help detect the user's genuine attitude. Based on our annotated dataset from Twitter, the models instantiated from our framework can increase the performance of attitude extraction by up to 23% compared to state-of-the-art text-only models. Using this framework, we successfully validate the feasibility of using social media to track the evolution of vaccination attitudes in real life. We further show one practical use of our framework by validating the possibility to forecast a user's vaccine hesitancy changes with information perceived from social media.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.