Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ScePT: Scene-consistent, Policy-based Trajectory Predictions for Planning (2206.13387v1)

Published 18 Jun 2022 in cs.AI, cs.CV, cs.LG, and cs.RO

Abstract: Trajectory prediction is a critical functionality of autonomous systems that share environments with uncontrolled agents, one prominent example being self-driving vehicles. Currently, most prediction methods do not enforce scene consistency, i.e., there are a substantial amount of self-collisions between predicted trajectories of different agents in the scene. Moreover, many approaches generate individual trajectory predictions per agent instead of joint trajectory predictions of the whole scene, which makes downstream planning difficult. In this work, we present ScePT, a policy planning-based trajectory prediction model that generates accurate, scene-consistent trajectory predictions suitable for autonomous system motion planning. It explicitly enforces scene consistency and learns an agent interaction policy that can be used for conditional prediction. Experiments on multiple real-world pedestrians and autonomous vehicle datasets show that ScePT} matches current state-of-the-art prediction accuracy with significantly improved scene consistency. We also demonstrate ScePT's ability to work with a downstream contingency planner.

Citations (67)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.