Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BashExplainer: Retrieval-Augmented Bash Code Comment Generation based on Fine-tuned CodeBERT (2206.13325v1)

Published 27 Jun 2022 in cs.SE

Abstract: Developers use shell commands for many tasks, such as file system management, network control, and process management. Bash is one of the most commonly used shells and plays an important role in Linux system development and maintenance. Due to the language flexibility of Bash code, developers who are not familiar with Bash often have difficulty understanding the purpose and functionality of Bash code. In this study, we study Bash code comment generation problem and proposed an automatic method BashExplainer based on two-stage training strategy. In the first stage, we train a Bash encoder by fine-tuning CodeBERT on our constructed Bash code corpus. In the second stage, we first retrieve the most similar code from the code repository for the target code based on semantic and lexical similarity. Then we use the trained Bash encoder to generate two vector representations. Finally, we fuse these two vector representations via the fusion layer and generate the code comment through the decoder. To show the competitiveness of our proposed method, we construct a high-quality corpus by combining the corpus shared in the previous NL2Bash study and the corpus shared in the NLC2CMD competition. This corpus contains 10,592 Bash codes and corresponding comments. Then we selected ten baselines from previous studies on automatic code comment generation, which cover information retrieval methods, deep learning methods, and hybrid methods.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.