Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MGNet: Monocular Geometric Scene Understanding for Autonomous Driving (2206.13199v1)

Published 27 Jun 2022 in cs.CV

Abstract: We introduce MGNet, a multi-task framework for monocular geometric scene understanding. We define monocular geometric scene understanding as the combination of two known tasks: Panoptic segmentation and self-supervised monocular depth estimation. Panoptic segmentation captures the full scene not only semantically, but also on an instance basis. Self-supervised monocular depth estimation uses geometric constraints derived from the camera measurement model in order to measure depth from monocular video sequences only. To the best of our knowledge, we are the first to propose the combination of these two tasks in one single model. Our model is designed with focus on low latency to provide fast inference in real-time on a single consumer-grade GPU. During deployment, our model produces dense 3D point clouds with instance aware semantic labels from single high-resolution camera images. We evaluate our model on two popular autonomous driving benchmarks, i.e., Cityscapes and KITTI, and show competitive performance among other real-time capable methods. Source code is available at https://github.com/markusschoen/MGNet.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.