Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Representing motion as a sequence of latent primitives, a flexible approach for human motion modelling (2206.13142v2)

Published 27 Jun 2022 in cs.CV

Abstract: We propose a new representation of human body motion which encodes a full motion in a sequence of latent motion primitives. Recently, task generic motion priors have been introduced and propose a coherent representation of human motion based on a single latent code, with encouraging results for many tasks. Extending these methods to longer motion with various duration and framerate is all but straightforward as one latent code proves inefficient to encode longer term variability. Our hypothesis is that long motions are better represented as a succession of actions than in a single block. By leveraging a sequence-to-sequence architecture, we propose a model that simultaneously learns a temporal segmentation of motion and a prior on the motion segments. To provide flexibility with temporal resolution and motion duration, our representation is continuous in time and can be queried for any timestamp. We show experimentally that our method leads to a significant improvement over state-of-the-art motion priors on a spatio-temporal completion task on sparse pointclouds. Code will be made available upon publication.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.