Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Budget Feasible Mechanisms for Procurement Auctions with Divisible Agents (2206.13124v2)

Published 27 Jun 2022 in cs.GT

Abstract: We consider budget feasible mechanisms for procurement auctions with additive valuation functions. For the divisible case, where agents can be allocated fractionally, there exists an optimal mechanism with approximation guarantee $e/(e-1)$ under the small bidder assumption. We study the divisible case without the small bidder assumption, but assume that the true costs of the agents are bounded by the budget. This setting lends itself to modeling economic situations in which the goods represent time and the agents' true costs are not necessarily small compared to the budget. Non-trivially, we give a mechanism with an approximation guarantee of 2.62, improving the result of 3 for the indivisible case. Additionally, we give a lower bound on the approximation guarantee of 1.25. We then study the problem in more competitive markets and assume that the agents' value over cost efficiencies are bounded by some $\theta \ge 1$. For $\theta \le 2$, we give a mechanism with an approximation guarantee of 2 and a lower bound of 1.18. Both results can be extended to settings with different agent types with a linear capped valuation function for each type. Finally, if each agent type has a concave valuation, we give a mechanism for which the approximation guarantee grows linearly with the number of agent types.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.