Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Beating Greedy Matching in Sublinear Time (2206.13057v1)

Published 27 Jun 2022 in cs.DS

Abstract: We study sublinear time algorithms for estimating the size of maximum matching in graphs. Our main result is a $(\frac{1}{2}+\Omega(1))$-approximation algorithm which can be implemented in $O(n{1+\epsilon})$ time, where $n$ is the number of vertices and the constant $\epsilon > 0$ can be made arbitrarily small. The best known lower bound for the problem is $\Omega(n)$, which holds for any constant approximation. Existing algorithms either obtain the greedy bound of $\frac{1}{2}$-approximation [Behnezhad FOCS'21], or require some assumption on the maximum degree to run in $o(n2)$-time [Yoshida, Yamamoto, and Ito STOC'09]. We improve over these by designing a less "adaptive" augmentation algorithm for maximum matching that might be of independent interest.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.