Papers
Topics
Authors
Recent
2000 character limit reached

Beating Greedy Matching in Sublinear Time (2206.13057v1)

Published 27 Jun 2022 in cs.DS

Abstract: We study sublinear time algorithms for estimating the size of maximum matching in graphs. Our main result is a $(\frac{1}{2}+\Omega(1))$-approximation algorithm which can be implemented in $O(n{1+\epsilon})$ time, where $n$ is the number of vertices and the constant $\epsilon > 0$ can be made arbitrarily small. The best known lower bound for the problem is $\Omega(n)$, which holds for any constant approximation. Existing algorithms either obtain the greedy bound of $\frac{1}{2}$-approximation [Behnezhad FOCS'21], or require some assumption on the maximum degree to run in $o(n2)$-time [Yoshida, Yamamoto, and Ito STOC'09]. We improve over these by designing a less "adaptive" augmentation algorithm for maximum matching that might be of independent interest.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.