Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels (2206.13025v1)

Published 27 Jun 2022 in cs.LG and cs.AI

Abstract: The memorization effect of deep neural networks (DNNs) plays a pivotal role in recent label noise learning methods. To exploit this effect, the model prediction-based methods have been widely adopted, which aim to exploit the outputs of DNNs in the early stage of learning to correct noisy labels. However, we observe that the model will make mistakes during label prediction, resulting in unsatisfactory performance. By contrast, the produced features in the early stage of learning show better robustness. Inspired by this observation, in this paper, we propose a novel feature embedding-based method for deep learning with label noise, termed LabEl NoiseDilution (LEND). To be specific, we first compute a similarity matrix based on current embedded features to capture the local structure of training data. Then, the noisy supervision signals carried by mislabeled data are overwhelmed by nearby correctly labeled ones (\textit{i.e.}, label noise dilution), of which the effectiveness is guaranteed by the inherent robustness of feature embedding. Finally, the training data with diluted labels are further used to train a robust classifier. Empirically, we conduct extensive experiments on both synthetic and real-world noisy datasets by comparing our LEND with several representative robust learning approaches. The results verify the effectiveness of our LEND.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.