Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Instance Discriminative Learning for Depression Detection from Speech Signals (2206.13016v1)

Published 27 Jun 2022 in eess.AS and q-bio.QM

Abstract: Major Depressive Disorder (MDD) is a severe illness that affects millions of people, and it is critical to diagnose this disorder as early as possible. Detecting depression from voice signals can be of great help to physicians and can be done without any invasive procedure. Since relevant labelled data are scarce, we propose a modified Instance Discriminative Learning (IDL) method, an unsupervised pre-training technique, to extract augment-invariant and instance-spread-out embeddings. In terms of learning augment-invariant embeddings, various data augmentation methods for speech are investigated, and time-masking yields the best performance. To learn instance-spread-out embeddings, we explore methods for sampling instances for a training batch (distinct speaker-based and random sampling). It is found that the distinct speaker-based sampling provides better performance than the random one, and we hypothesize that this result is because relevant speaker information is preserved in the embedding. Additionally, we propose a novel sampling strategy, Pseudo Instance-based Sampling (PIS), based on clustering algorithms, to enhance spread-out characteristics of the embeddings. Experiments are conducted with DepAudioNet on DAIC-WOZ (English) and CONVERGE (Mandarin) datasets, and statistically significant improvements, with p-value 0.0015 and 0.05, respectively, are observed using PIS in the detection of MDD relative to the baseline without pre-training.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.