Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving the Training Recipe for a Robust Conformer-based Hybrid Model (2206.12955v1)

Published 26 Jun 2022 in cs.CL, eess.AS, and stat.ML

Abstract: Speaker adaptation is important to build robust automatic speech recognition (ASR) systems. In this work, we investigate various methods for speaker adaptive training (SAT) based on feature-space approaches for a conformer-based acoustic model (AM) on the Switchboard 300h dataset. We propose a method, called Weighted-Simple-Add, which adds weighted speaker information vectors to the input of the multi-head self-attention module of the conformer AM. Using this method for SAT, we achieve 3.5% and 4.5% relative improvement in terms of WER on the CallHome part of Hub5'00 and Hub5'01 respectively. Moreover, we build on top of our previous work where we proposed a novel and competitive training recipe for a conformer-based hybrid AM. We extend and improve this recipe where we achieve 11% relative improvement in terms of word-error-rate (WER) on Switchboard 300h Hub5'00 dataset. We also make this recipe efficient by reducing the total number of parameters by 34% relative.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.