Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

An Empirical Study on Bug Severity Estimation using Source Code Metrics and Static Analysis (2206.12927v2)

Published 26 Jun 2022 in cs.SE

Abstract: In the past couple of decades, significant research efforts have been devoted to the prediction of software bugs (i.e., defects). In general, these works leverage a diverse set of metrics, tools, and techniques to predict which classes, methods, lines, or commits are buggy. However, most existing work in this domain treats all bugs the same, which is not the case in practice. The more severe the bugs the higher their consequences. Therefore, it is important for a defect prediction method to estimate the severity of the identified bugs, so that the higher severity ones get immediate attention. In this paper, we provide a quantitative and qualitative study on two popular datasets (Defects4J and Bugs.jar), using 10 common source code metrics, and two popular static analysis tools (SpotBugs and Infer) for analyzing their capability to predict defects and their severity. We studied 3,358 buggy methods with different severity labels from 19 Java open-source projects. Results show that although code metrics are useful in predicting buggy code (Lines of the Code, Maintainable Index, FanOut, and Effort metrics are the best), they cannot estimate the severity level of the bugs. In addition, we observed that static analysis tools have weak performance in both predicting bugs (F1 score range of 3.1%-7.1%) and their severity label (F1 score under 2%). We also manually studied the characteristics of the severe bugs to identify possible reasons behind the weak performance of code metrics and static analysis tools in estimating their severity. Also, our categorization shows that Security bugs have high severity in most cases while Edge/Boundary faults have low severity. Finally, we discuss the practical implications of the results and propose new directions for future research.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.