Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PCDF: A Parallel-Computing Distributed Framework for Sponsored Search Advertising Serving (2206.12893v3)

Published 26 Jun 2022 in cs.IR

Abstract: Traditional online advertising systems for sponsored search follow a cascade paradigm with retrieval, pre-ranking,ranking, respectively. Constrained by strict requirements on online inference efficiency, it tend to be difficult to deploy useful but computationally intensive modules in the ranking stage. Moreover, ranking models currently used in the industry assume the user click only relies on the advertisements itself, which results in the ranking stage overlooking the impact of organic search results on the predicted advertisements (ads). In this work, we propose a novel framework PCDF(Parallel-Computing Distributed Framework), allowing to split the computation cost into three parts and to deploy them in the pre-module in parallel with the retrieval stage, the middle-module for ranking ads, and the post-module for re-ranking ads with external items. Our PCDF effectively reduces the overall inference latency compared with the classic framework. The whole module is end-to-end offline training and adapt for the online learning paradigm. To our knowledge, we are the first to propose an end-to-end solution for online training and deployment on complex CTR models from the system framework side.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.