Papers
Topics
Authors
Recent
Search
2000 character limit reached

Marginal Inference queries in Hidden Markov Models under context-free grammar constraints

Published 26 Jun 2022 in cs.AI and cs.FL | (2206.12862v1)

Abstract: The primary use of any probabilistic model involving a set of random variables is to run inference and sampling queries on it. Inference queries in classical probabilistic models is concerned by the computation of marginal or conditional probabilities of events given as an input. When the probabilistic model is sequential, more sophisticated marginal inference queries involving complex grammars may be of interest in fields such as computational linguistics and NLP. In this work, we address the question of computing the likelihood of context-free grammars (CFGs) in Hidden Markov Models (HMMs). We provide a dynamic algorithm for the exact computation of the likelihood for the class of unambiguous context-free grammars. We show that the problem is NP-Hard, even with the promise that the input CFG has a degree of ambiguity less than or equal to 2. We then propose a fully polynomial randomized approximation scheme (FPRAS) algorithm to approximate the likelihood for the case of polynomially-bounded ambiguous CFGs.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.