Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Meta Auxiliary Learning for Low-resource Spoken Language Understanding (2206.12774v1)

Published 26 Jun 2022 in eess.AS, cs.CL, and cs.SD

Abstract: Spoken language understanding (SLU) treats automatic speech recognition (ASR) and natural language understanding (NLU) as a unified task and usually suffers from data scarcity. We exploit an ASR and NLU joint training method based on meta auxiliary learning to improve the performance of low-resource SLU task by only taking advantage of abundant manual transcriptions of speech data. One obvious advantage of such method is that it provides a flexible framework to implement a low-resource SLU training task without requiring access to any further semantic annotations. In particular, a NLU model is taken as label generation network to predict intent and slot tags from texts; a multi-task network trains ASR task and SLU task synchronously from speech; and the predictions of label generation network are delivered to the multi-task network as semantic targets. The efficiency of the proposed algorithm is demonstrated with experiments on the public CATSLU dataset, which produces more suitable ASR hypotheses for the downstream NLU task.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.