Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SiMa: Effective and Efficient Matching Across Data Silos Using Graph Neural Networks (2206.12733v2)

Published 25 Jun 2022 in cs.DB

Abstract: How can we leverage existing column relationships within silos, to predict similar ones across silos? Can we do this efficiently and effectively? Existing matching approaches do not exploit prior knowledge, relying on prohibitively expensive similarity computations. In this paper we present the first technique for matching columns across data silos, called SiMa, which leverages Graph Neural Networks (GNNs) to learn from existing column relationships within data silos, and dataset-specific profiles. The main novelty of SiMa is its ability to be trained incrementally on column relationships within each silo individually, without requiring the consolidation of all datasets in a single place. Our experiments show that SiMa is more effective than the - otherwise inapplicable to the setting of silos - state-of-the-art matching methods, while requiring orders of magnitude less computational resources. Moreover, we demonstrate that SiMa considerably outperforms other state-of-the-art column representation learning methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.