Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-supervised Context-aware Style Representation for Expressive Speech Synthesis (2206.12559v1)

Published 25 Jun 2022 in cs.SD, cs.AI, cs.CL, and eess.AS

Abstract: Expressive speech synthesis, like audiobook synthesis, is still challenging for style representation learning and prediction. Deriving from reference audio or predicting style tags from text requires a huge amount of labeled data, which is costly to acquire and difficult to define and annotate accurately. In this paper, we propose a novel framework for learning style representation from abundant plain text in a self-supervised manner. It leverages an emotion lexicon and uses contrastive learning and deep clustering. We further integrate the style representation as a conditioned embedding in a multi-style Transformer TTS. Comparing with multi-style TTS by predicting style tags trained on the same dataset but with human annotations, our method achieves improved results according to subjective evaluations on both in-domain and out-of-domain test sets in audiobook speech. Moreover, with implicit context-aware style representation, the emotion transition of synthesized audio in a long paragraph appears more natural. The audio samples are available on the demo web.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.