Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Black Box Optimization Using QUBO and the Cross Entropy Method (2206.12510v3)

Published 24 Jun 2022 in cs.LG

Abstract: Black-box optimization (BBO) can be used to optimize functions whose analytic form is unknown. A common approach to realising BBO is to learn a surrogate model which approximates the target black-box function which can then be solved via white-box optimization methods. In this paper, we present our approach BOX-QUBO, where the surrogate model is a QUBO matrix. However, unlike in previous state-of-the-art approaches, this matrix is not trained entirely by regression, but mostly by classification between 'good' and 'bad' solutions. This better accounts for the low capacity of the QUBO matrix, resulting in significantly better solutions overall. We tested our approach against the state-of-the-art on four domains and in all of them BOX-QUBO showed better results. A second contribution of this paper is the idea to also solve white-box problems, i.e. problems which could be directly formulated as QUBO, by means of black-box optimization in order to reduce the size of the QUBOs to the information-theoretic minimum. Experiments show that this significantly improves the results for MAX-k-SAT.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.