Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Predicting within and across language phoneme recognition performance of self-supervised learning speech pre-trained models (2206.12489v1)

Published 24 Jun 2022 in eess.AS and cs.SD

Abstract: In this work, we analyzed and compared speech representations extracted from different frozen self-supervised learning (SSL) speech pre-trained models on their ability to capture articulatory features (AF) information and their subsequent prediction of phone recognition performance for within and across language scenarios. Specifically, we compared CPC, wav2vec 2.0, and HuBert. First, frame-level AF probing tasks were implemented. Subsequently, phone-level end-to-end ASR systems for phoneme recognition tasks were implemented, and the performance on the frame-level AF probing task and the phone accuracy were correlated. Compared to the conventional speech representation MFCC, all SSL pre-trained speech representations captured more AF information, and achieved better phoneme recognition performance within and across languages, with HuBert performing best. The frame-level AF probing task is a good predictor of phoneme recognition performance, showing the importance of capturing AF information in the speech representations. Compared with MFCC, in the within-language scenario, the performance of these SSL speech pre-trained models on AF probing tasks achieved a maximum relative increase of 34.4%, and it resulted in the lowest PER of 10.2%. In the cross-language scenario, the maximum relative increase of 26.7% also resulted in the lowest PER of 23.0%.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube