Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low- and Mixed-Precision Inference Accelerators (2206.12358v1)

Published 24 Jun 2022 in cs.AR

Abstract: With the surging popularity of edge computing, the need to efficiently perform neural network inference on battery-constrained IoT devices has greatly increased. While algorithmic developments enable neural networks to solve increasingly more complex tasks, the deployment of these networks on edge devices can be problematic due to the stringent energy, latency, and memory requirements. One way to alleviate these requirements is by heavily quantizing the neural network, i.e. lowering the precision of the operands. By taking quantization to the extreme, e.g. by using binary values, new opportunities arise to increase the energy efficiency. Several hardware accelerators exploiting the opportunities of low-precision inference have been created, all aiming at enabling neural network inference at the edge. In this chapter, design choices and their implications on the flexibility and energy efficiency of several accelerators supporting extremely quantized networks are reviewed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.