Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Avoiding Power-Seeking by Artificial Intelligence (2206.11831v1)

Published 23 Jun 2022 in cs.AI

Abstract: We do not know how to align a very intelligent AI agent's behavior with human interests. I investigate whether -- absent a full solution to this AI alignment problem -- we can build smart AI agents which have limited impact on the world, and which do not autonomously seek power. In this thesis, I introduce the attainable utility preservation (AUP) method. I demonstrate that AUP produces conservative, option-preserving behavior within toy gridworlds and within complex environments based off of Conway's Game of Life. I formalize the problem of side effect avoidance, which provides a way to quantify the side effects an agent had on the world. I also give a formal definition of power-seeking in the context of AI agents and show that optimal policies tend to seek power. In particular, most reward functions have optimal policies which avoid deactivation. This is a problem if we want to deactivate or correct an intelligent agent after we have deployed it. My theorems suggest that since most agent goals conflict with ours, the agent would very probably resist correction. I extend these theorems to show that power-seeking incentives occur not just for optimal decision-makers, but under a wide range of decision-making procedures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)